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Project Overview
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• Improve electrolyzer robustness to 
industrial flue gas components, carbon 
and energy efficiency. 

• Improve molecular biology tools and flux to 
mevalonic acid

• Evolve strains via ALE and directed strain 
engineering

• Integrate system to demonstrate the process of converting CO2 into fuels and 
chemicals

• Identify two near term industrial sites with low cost electrical and CO2 feedstocks



Project 
Goals

1. Reduce CO2 membrane crossover by 20% in a MEA CO2 electrolyzer.
2. Identify at least 2 near term sites with low carbon electricity and 

low-cost CO2 feedstocks to identify opportunities to integrate this 
technology at scale.

3. Increase the carbon conversion efficiency from CO, H2 and CO2 into 
ethanol and mevolnic acid by at least 20%.
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1. Approach - Project Management 

Task 1 - Liu (DM)
CO2 Electrolyzer

performance 
improvement

Task 2 - Guarnieri
Gas fermentation strain 
optimization and tool 

development

Task 3 - Resch
Analysis and integration of 
CO2 electrolysis with gas 

fermentation

• Bi-weekly Project Meetings
• Molecular Biology specific meetings 

monthly 

• Bi-monthly Working Groups              
E-COWG, B-COWG, A-COWG

• Site Visits with industrial partners
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1. Approach – Research Focus Key Cost Drivers

Huang et.al. Applied Energy (2020)

2.1.0.506:Economics and Sustainability of CO2 Utilization Technologies with TEA and LCA
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1. Electrochemical CO2 Reduction Gaps
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1. Flue Gas Components to Test on Electrolyzers

Component
s

[High] CO2
Flue gas

Electrolyzer Testing 
Conditions

Results 

CO2 99%+ 14-100% 
VOC < 1000 ppm 

(combined)
Acetic Acid N.D. 100+ hrs. OK up to 500 ppm
Acetone 0.6 100+ hrs. OK up to 500 ppm

VSC < 10 ppm 
(combined)

Hydrogen 
Sulfide 2.3 0-50 ppm Decrease @ 3 ppm

Methyl 
mercaptan 0.1 0-10 ppm Decrease @ 2 ppm
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1. Waste Gas Compositions for Fermentation

H2 CO CO2 N2 ALE

High CO 2% 65% 33% 0% O

Low CO 10% 45% 23% 22% O

High H2 50% 10% 30% 10% X

SMOG 5% 55% 30% 10% X

Syngas 30% 30% 30% 10% X

High H2 gas: refinery off-gas.
Steel-Making Off Gas (SMOG)
Syngas: representative for gasification of municipal solid waste or biomass.
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1. Electrolyzer Integration with Gas Fermenter

C. Auto Fermentation is identical with 
bottled gas or electrolyzer output
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Construction of de novo Mevalonate biosensor

Strategy 1 will employ transcriptomic 
profiling of cells exposed to mevalonate to 
identify promoter with strong expression 
responses MVA

+MVA-MVA

Use reporter gene under the 
control of MVA-activated 
promoters to enhance pathway 
development

GFPTranscriptomics (E. coli/C. auto) to identify 
gene responsive to MVA Adapted from Liang et al. 2017

Strategy 2 will utilize both random and 
targeted mutagenesis to adapt known 
transcriptional regulators into responding 
to mevalonate

A two-pronged approach to construct our biosensor

Why Mevalonic Acid?
• Flexibility in feedstocks and end products beyond ethanol such as isopropyl alcohol, acetone, and mevalonate
•Mevalonate is the precursor for high value chemicals such as isoprene as a key ingredient for synthetic rubber. 
•US has no domestic source of rubber, biomanufacturing will play a growing role in our domestic independence from both fossil-fuel based 
commodity chemicals and products.
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1. How to design and operate an electrolyzer and the impact on economics
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2. Progress and Outcomes

Year 1
Start Q2 FY22

üProject kick-off
üDemonstrate C. auto transformation protocols
üRun Electrolyzer with CO2 and 3 ppm H2S for 250 hours with less than 10% increase in cell voltage

Year 2

üDemonstrate at least 2X increase in maximum expression level of a reporter gene
§Generate mevalonate biosensor
§Quantify electrolyzer performance as a function of H2S concentration (>3 ppm)
§ Report optimal operating strategies and system designs for electrolyzers 
§Demonstrate membrane regeneration strategies to recover performance within 90% of initial performance.

Year 3
End Q4 FY24

§ Reduce CO2 membrane crossover by 20% in a MEA CO2 electrolyzer.
§ Identify at least 3 near term sites with low carbon electricity and low-cost CO2 feedstocks to identify opportunities to integrate this 

technology at scale.
§ Increase the carbon conversion efficiency from CO2 to ethanol and melonic acid by at least 20%.
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2. Increased durability

100 mA/cm2 3ppm of H2 S for up to 3000hr
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2.  Improved Membranes

1 Avcarb GDS 
2 Ag catalyst layer 
3 Sustainion® membrane 
4 IrO2 catalyst layer 
5 Toray carbon fiber paper
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2. Summary of H2S effect
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2. Colocalization of Ag(S) Particles in Membrane

Silver Sulfur

SEM-EDX element localization and quantification
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2. Strain and Fermentation Engineering

NREL
• MVA Biosensor/selector Tool Development
• Small-scale ALE
• Metabolite, Offgas, and Compositional analyses

Lanzatech
• Provide strains and plasmids
• ALE Scale-up
• Next-gen seq sequencing and genome-scale 

modeling

ORNL
• Toolbox expansion

Ø High-copy number plasmids 
Ø Dynamic pathway control (w/ Agile)
Ø Terminators and genetic insulators 
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2. Adaptive Laboratory Evolution for Enhanced CO Utilization

• We have identified mutants with enhanced growth rate and product 
formation relative to WT C. autoethanogenum.
– Achieved >57g/L acetate titer under continuous gas feed (CO as sole carbon 

source)
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2. Transcriptomic Results From High CO Adapted Mutant

• Comparative genomic 
analyses have identified 
candidate mutations 
conferring enhanced 
phenotype.

• Currently conducting 
comparative 
transcriptomics to identify 
differentially expressed 
genes to inform targeted 
engineering efforts.
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2. Accomplishments in Task 2

1. Establishment of CO delivery/cultivation/fermentation 
system at NREL

2. Reproduction of LT genetic engineering capabilities
3. Chemically mutagenized and adapted to low and high-CO 

electrolytic syngas streams
4. Genomic and transcriptional characterization of top-

candidate mutant strains
5. Physiological characterization (growth rate, substrate 

utilization, and product formation) of top-candidate mutant 
strains.

6. Initiation of a MVA biosensor development
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2. Optimization of System Integration

Geospatial feasibility and opportunity analysis 
– High concentration CO2 feedstock stream
– Low-cost wholesale power
– Highly renewable grid

Economic tradeoff analysis of: 
– Buffer tank storage of feedstock and 

products
– Battery energy storage to offset high 

energy costs
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3. Impact of CI

0 200 400 600

Renewable Electricity

US Grid Electricity

Petrolium Gasoline

Corn Ethanol

gCO2/MJ

CI of ethanol using renewable electricity is magnitudes lower than using U.S. average grid electricity

Data adopted from Lee et. Al. 
Biofpr (2020)
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3. Impact - Industrial CO2 Flue Gas Feedstocks
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3. Integration and Scaling
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Summary

• Integrated 250 cm2 CO2 electrolyzer with CSTR
• Improved MEA membranes
• Successfully ran CO2 electrolyzers with 3 ppm H2S for 

3000 hours
• Demonstrated transformation and gene expression in C. 

auto
• Adapted C. auto using ALE to improve growth on high and 

low CO gas mixtures
• Identified key genes responsible for enhanced growth 

phenotype
• Identified process parameters to optimize usage of low-

cost renewable electricity to power electrolysis
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Timeline
• Start Date: 1/1/2022
• End Date:   9/30/2024

FY22 Costed Total Award

DOE 
Funding

$925,000 $1,750,000

Project 
Cost 
Share*

N/A

TRL at Project Start:
TRL at Project End:

Project Goal
Incentivize CO2 Utilization via integration of 
downstream electrolytic and biocatalytic upgrading 
of flue gases into fuels and chemical intermediates. 
End of Project Milestone
1) Reduce CO2  membrane crossover by 20% in a 
MEA CO2 electrolyzer.
2) Identify at least 3 near term sites with low 
carbon electricity and low-cost CO2 feedstocks to 
identify opportunities to integrate this technology 
at scale. 
3) Increase the carbon conversion efficiency from 
CO2 to ethanol and isoprene by at least 20%.  
(9/30/2024)

Project Partners
• Dioxide Materials 
• LanzaTech
• Oak Ridge National Lab

Quad Chart Overview

Funding Mechanism
CO2 Lab Call FY22
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Technology gaps
• Carbon support 

stability
• Heat management
• Mass Transport

• Carbon support 
chemistry

• Channel design

• Catalyst 
stability

• Contaminant 
tolerance

• Channel design
• Humidification 

requirement

• Mechanisms
• pH effects

Technology gaps

Electrochemical CO2 Reduction Gaps
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Avoid peak prices during morning and 
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Project milestones Due date Percent 
complete

Date Completed On track?

Establish Material Transfer Agreement for the Transfer of proprietary 
strains and sequences from LT to ORNL and NREL 03/31/2022 100% 03/31/22 Y

Run electrolyzer on H2S. No more than 10% increase in electrolyzer
voltage at 200mA/cm² when fed with ~3 ppm of H2S for 250 hours 06/30/2022 100% 06/30/2022 Y

Demonstrate at least 2X increase in maximum expression level of a 
reporter gene by promoter, RBS, mRNA stability, or plasmid copy number 
engineering.

9/30/2022 100% 12/31/22 Y

Generate functional mevalonate biosensor. Demonstrate mevalonate-
mediated activation of an anaerobic fluorescent reporter cassette in 
response to exogenously supplemented mevalonate. Strains harboring a 
functional biosensor will be screened and selected via fluorometry to 
establish a background chassis for C. autoethanogenum variants with 
enhanced mevalonate co-production capacity.

12/31/22 50% N

Quantify H2S effects on electrolyzer performance. No more than 5% 
increase in electrolyzer voltage when fed with 3 ppm of H2S for 500 hours 
at 100 mA/cm2.

3/30/23 75% Y

Draft technoeconomic analysis report. Draft report summarizing 
methodologies and assumptions for modeling of a CO2 -> CO electrolyzer 
system integrated into an existing biorefinery. Report optimal operating 
strategies and system designs for electrolyzers operating in wholesale 
power markets in regions with existing biorefineries under current and 
future market conditions. Report will also summarize spatial analysis of 
low-cost electricity and high-concentration CO2 resources. Key 
performance metrics include the levelized production cost of CO in $/kg 
CO

6/30/23 50% Y

Electrolyzer regeneration. Demonstrate membrane regeneration 
strategies to recover performance within 90% of initial performance. 9/30/23 25% Y
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Milestone 
Name/Description Criteria End Date Type

Moving to an industrial 
process

1. Reduce CO2 membrane crossover by 20% in a MEA CO2 electrolyzer.
2. Identify at least 3 near term sites with low carbon electricity and low cost 

CO2 feedstocks to identify opportunities to integrate this technology at 
scale.

3. Increase the carbon conversion efficiency from CO2 to ethanol and 
melonic acid by at least 20%.

9/30/24 End of Project 
Milestone
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Publications, Patents, Presentations, Awards, and Commercialization

Provisional Patent “Clostridium autoethanogenum with enhanced growth rate” Prov/22-91, Patent Application No. 
63/412,137

Publications / Presentations:
1. Resch, Michael “Increasing Carbon Efficiencies of Biorefineries” Aug 2022 SIMB Annual Meeting, San Francisco, CA

2. Adam Guss. “Using synthetic biology to solve challenges in plastic waste and renewable chemical production”.
Biological Sciences Departmental Seminar, Missouri S&T, Rolla, MO. September 27, 2022.

3. R. Gary Grim, Dwarak Ravikumar, Eric Tan, Zhe Huang, Jack Ferrell, Michael Resch, Zhenglong Li, Chirag Mevawala,
Steven D. Phillips, Lesley Snowden-Swan, Ling Tao, and Joshua A. Schaidle. “Electrifying the Production of Sustainable
Aviation Fuel: The Risks, Economics, and Environmental Benefits of Emerging Pathways Including CO2” Energy &
Environmental Science, 2022, DOI: 10.1039/D2EE02439J
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Value Proposition
• By producing valuable products from waste 

CO2 this project will incentivize CCU to 
realize carbon circular economy 
opportunities

Key Differentiators
• Utilization of inexpensive feedstocks to 

produce products with low carbon intensity
• Process integration to link concepts
• Core national lab capability 
• Market drive to low carbon fuels and 

chemicals
• Industrial partners
• Best in class technology

NREL’s Bioenergy Program Is Enabling a 
Sustainable Energy Future by Responding 

to Key Market Needs

Market Trends
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2. STEM-EDS Element Quantification

Cathode Cathode/Membrane 
Interface

Anode/Membrane 
Interface Anode

50 mA/cm2 100 mA/cm2 200 mA/cm2 50 mA/cm2 100 mA/cm2 200 mA/cm2 50 mA/cm2 100 mA/cm2 200 mA/cm2 50 mA/cm2 100 mA/cm2 200 mA/cm2

C 84.47 81.72 79.96 82.12 67.91 89.46 85.99 80.45 78.73 79.69 76.01 79.27
O 4.17 2.41 3.46 1.11 0.59 2.27 10.40 1.91 16.65 14.15 15.06 17.06
S 0.46 0.31 0.61 1.01 6.45 2.06 0.01 4.43 0.66 0.12 0.61 0.20

Ag 10.86 15.51 15.91 12.69 24.78 6.08 0.02 12.73 0.14 0.52 1.13 0.24
Ir 0.01 0.00 0.01 0.02 0.03 0.05 3.55 0.21 3.78 5.47 7.15 3.23
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2.  H2S effect over 250 hours

• Q4 FY22 Milestone Met
– no more than 10% increase in electrolyzer

voltage at 200 mA/cm2  when fed 3ppm 
H2S for 250 hours

– Cell voltage increased from 3.04 to 3.20V, 
by 5.3%

• Cell conditions
– Membrane thickness 70um
– 200mA/cm2
– 3ppm H2S
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Electrolyzer Regeneration/elimination strategies
• Noticeable degradation in the presence of H2S

– Cell voltage increased with time
– Conversion of CO2 to CO Decreased over time.

• Leakage current developed at higher current of 200mA/cm2

• Possible reasons
– Chemical effects

• H2S interaction with Ag
• Switching to pure CO2

– Cell voltage decreased/ performance returned
– Physical effects

• Improve membrane properties
– Anolyte

• pH and conductivity decrease due to migration of HS- (from cathode to anode) and K+ (from 
anode to cathode)

– carbon corrosion in anode
• Plan to replace carbon substrate
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2. Development of Genetic Tools in C. auto
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Milestone met FY22 Q4: Demonstrate at least 2X increase in maximum expression level of a 
reporter gene 
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Next steps for analysis

• Continued collaboration with other CO2RUe analysis projects and teams:
– Low carbon electricity price datasets (current and future) with Markets-EEJ 

project
– Insights from TEA/LCA project for cost drivers that are beyond the scope of this 

work but could impact electrolyzer integration and operation with fermenter
• Analysis of key cost drivers for CO2 -> CO electrolyzer
• Identify two biorefinery locations and model bolt on conversion technology
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Slide Title

• Analysis and 
Modeling

• CO2 Electrolysis • Biological 
Upgrading


